Harmonic superspaces of extended supersymmetry. I. The calculus of harmonic variables

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1985 J. Phys. A: Math. Gen. 183433
(http://iopscience.iop.org/0305-4470/18/17/026)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 09:18

Please note that terms and conditions apply.

Harmonic superspaces of extended supersymmetry: I. The calculus of harmonic variables

E Ivanov, S Kalitzin, Nguyen Ai Viet and V Ogievetsky
Joint Institute for Nuclear Research, Laboratory of Theoretical Physics, 141 980, Dubna, USSR

Received 17 December 1984, in final form 18 April 1985

Abstract

The main technical apparatus of the harmonic superspace approach to extended SUSY, the calculus of harmonic variables on homogeneous spaces of the SUSY automorphism groups is presented in detail for $N=2,3,4$. We construct the basic harmonics for the coset manifolds G / H with $G=S U(2), H=U(1) ; G=S U(3), H=S U(2) \times U(1)$ and $\mathrm{H}=\mathrm{U}(1) \times \mathrm{U}(1) ; \quad \mathrm{G}=\mathrm{SU}(4), \quad \mathrm{H}=\mathrm{SU}(3) \times \mathrm{U}(1), \quad \mathrm{H}=\mathrm{SU}(2) \times \mathrm{SU}(2) \times \mathrm{U}(1), \quad \mathrm{H}=$ $S U(2) \times U(1) \times U(1)$ and $H=U(1) \times U(1) \times U(1), \quad G=U S p(2), \quad H=S U(2) \times S U(2), \quad H=$ $\mathrm{SU}(2) \times \mathrm{U}(1)$ and $\mathrm{H}=\mathrm{U}(1) \times \mathrm{U}(1)$ and tabulate a number of useful relations between them.

1. Introduction

Recently, the concept of harmonic superspace was proposed for obtaining an unconstrained formulation of $N=2$ matter, super Yang-Mills (SYm) and supergravity theories (Galperin et al 1984). The same approach proved to be suitable for constructing an off-shell $N=3$ sym theory (Galperin et al 1985), thus circumventing the famous $N=3$ barrier (Roček and Siegel 1981, Rivelles and Taylor 1982). The main idea consists of enlarging the ordinary superspace by some new even coordinates u_{i}^{A} that form a basis set of harmonic functions on some coset manifold $\mathrm{G} / \mathrm{H}, \mathrm{G}$ being the group of automorphisms of the supersymmetry (susy) algebra (i.e. $\operatorname{SU}(2)$ in $N=2$ and SU(3) in $N=3$ cases, etc), H being one of its subgroups. Then it is possible to extract from this enlarged superspace a subspace, called analytic (Galperin et al 1984, 1985), relevant for constructing unconstrained susy theories. The fundamental superfield objects of those theories appear very elegantly as analytic functions defined on this subspace.

The purpose of the present paper is to give a kind of glossary of harmonic calculus for the simplest groups and their cosets G/H. Only a few of the examples considered here have been already used in constructing extended susy theories: the relevance of the remaining ones may be revealed later. There is a remarkable intimate connection between the geometric structure of a susy theory and the choice of the homogeneous space G / H used to define the harmonic u_{i}^{A}. We intend to list all harmonic superspaces of interest and their analytic subspaces in another paper based on the matter given here.

We would like to emphasise that for the moment we are not ready to discuss a realistic theory of the $N=4$ sym in harmonic superspace. There appear some difficulties for this theory, especially the one associated with the reality constraint on the field strength (Ahmed et al 1985). There are some radical ways to resolve this problem,
but the discussion of them is beyond the scope of the present paper. We only note that these essentially use the harmonic calculus on $\operatorname{SU}(4)$ given here.

The paper is organised as follows. Section 2 describes the general techniques of constructing harmonics on some coset space G / H. For pedagogical reasons we illustrate these techniques by the familiar $\mathrm{SU}(2) / \mathrm{U}(1)$ example extensively used in $N=2$ susy (Galperin et al 1984). All other cases are treated analogously to this simplest one. Section 3 treats cosets associated with $\mathrm{G}=\mathrm{SU}(3)$ (both for $\mathrm{H}=\mathrm{SU}(2) \times \mathrm{U}(1)$ and $U(1) \times U(1))$, in § 4 we consider cosets of $G=S U(4)$ for $H=S U(3) \times U(1), S U(2) \times$ $\mathrm{SU}(2) \times \mathrm{U}(1), \mathrm{SU}(2) \times \mathrm{U}(1) \times \mathrm{U}(1)$ and $\mathrm{U}(1) \times \mathrm{U}(1) \times \mathrm{U}(1)$. Section 5 is devoted to the case of $G=U S p(2)$ with $H=S U(2) \times S U(2), S U(2) \times U(1)$ and $U(1) \times U(1)$. Some brief concluding remarks are given in $\S 6$.

2. General techniques and $\mathbf{S U (2) / U (1) ~ e x a m p l e}$

We begin by introducing the set of harmonics u_{i}^{A} defined on the manifold $\mathrm{G} / \mathrm{H}, \mathrm{H} \subset \mathrm{G}$; H, G being compact groups. We take the matrix representation of G and H , and so we can define $u_{i}^{j} \in \mathrm{G} / \mathrm{H}$, to be, say, $N \times N$ matrix. For instance, if $\mathrm{G}=\mathrm{SU}(2)$ and $\mathrm{H}=\mathrm{U}(1)$ is its diagonal subgroup, then

$$
\begin{equation*}
u_{i}^{j}=\left[\operatorname{expi}\left(\varphi T^{++}+\bar{\varphi} T^{--}\right)\right]_{j}^{i} \tag{2.1}
\end{equation*}
$$

where φ is complex variable,

$$
T^{++}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad T^{--}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

are $\operatorname{SU(2)}$ generators, $i, j=1,2$.
The action of an element g_{i}^{k} of G on the coset element is defined as (Salam and Strathdee 1982)

$$
\begin{equation*}
u_{i}^{j} \rightarrow u_{i}^{j j}=g_{i}^{k} u_{k}^{l} h_{l}^{j}(g, u) \tag{2.2}
\end{equation*}
$$

where $h \in \mathrm{H}$ is a 'compensating' right H transformation. Next, let us introduce a set of basis vectors q_{i}^{A} in the G representation space (normally, the fundamental representation is considered) such that for any $h \in H$

$$
\begin{equation*}
q_{i}^{\mathrm{A}} \rightarrow q_{i}^{\prime \mathrm{A}}=h_{i}^{l} q_{l}^{\mathrm{A}} \equiv q_{i}^{\mathrm{B}} h_{\mathrm{B}}^{\mathrm{A}} \tag{2.3}
\end{equation*}
$$

and h_{B}^{A} has a block-diagonal form. Here indices i, j refer to the fundamental irrep of G and A, B, \ldots run through all irreps of H which are contained in the fundamental irrep of G. Thus h_{B}^{A} is the matrix in this reducible H representation.

Now, the harmonics are defined as

$$
\begin{align*}
& u_{i}^{A}=u_{i}^{J} q_{j}^{A} \\
& \mathrm{G}: u_{i}^{A} \rightarrow u_{i}^{\prime A}=g_{i}^{k} u_{k}^{B} h_{\mathrm{B}}^{A}(g, u) \tag{2.4}
\end{align*}
$$

and they belong to the representation space of $G \times$ representation space of H. So, they transform under $\mathrm{G} \times \mathrm{H}$, where G acts from the left and H from the right.

According to (2.2) and (2.3) the right H transformation is not independent, it is completely fixed by the left G ones. However, we can in fact introduce u_{i}^{A} as 'free' objects in the $G \times H$ representation space, i.e. as a kind of vielbein converting G reps into H reps. The group G is originally realised on them by left multiplications (without
compensating H transformations). At the same time, u_{i}^{A} are transformed from the right by a new independent gauge group H whose parameters are arbitrary functions of u_{i}^{A} themselves. If we then fix the H gauge so as to reduce the number of independent parameters in u_{i}^{A} (equal originally to $\operatorname{dim} G$) to $\operatorname{dim} G / H$, we recover the standard coset formulation (2.4). Thus, requiring invariance under right gauge H transformations one may adhere to the 'vielbein' interpretation of u_{i}^{A} which is convenient in a number of aspects.

For the $\mathrm{SU}(2) / \mathrm{U}(1)$ case the q_{i}^{A} vectors are evidently

$$
q_{i}^{+}=\binom{1}{0}, \quad q_{i}^{-}=\binom{0}{1}
$$

(+ and - label the $\mathrm{U}(1)$ irreps) that according to (2.3) and (2.4), gives us the harmonics from (Galperin et al 1984), namely

$$
\begin{align*}
& u_{i}^{+}=u_{i}^{1} \tag{2.5}\\
& u_{i}^{-}=u_{i}^{2}
\end{align*} \quad u_{i}^{j}=\left(\begin{array}{ll}
u_{1}^{+} & u_{1}^{-} \\
u_{2}^{+} & u_{2}^{-}
\end{array}\right)
$$

Let us point out that, since u_{i}^{j} is a G matrix, this implies some relations between u_{i}^{A}, e.g. in the $\operatorname{SU}(2) / \mathrm{U}(1)$ case:

$$
\begin{equation*}
u^{\dagger} u=u u^{\dagger}=\mathbb{1}_{2} \tag{2.6a}
\end{equation*}
$$

whence

$$
\begin{align*}
& u^{+i} u_{i}^{-}=1 \Leftrightarrow u_{i}^{+} u_{j}^{-}-u_{j}^{+} u_{i}^{-}=\varepsilon_{i j} \tag{2.6b}\\
& u^{+i} u_{i}^{+}=u^{-i} u_{i}^{-}=0 \tag{2.6c}\\
& u_{i}^{-}=\overline{\left(u^{+i}\right)} .
\end{align*}
$$

Here (2.6) represents the unitarity and unimodularity properties of $\mathrm{SU}(2)$ matrices. We shall see that such constraints are prototypes of those for the more complicated cases listed below. Moreover, (2.6) gives us the possibility to convert, as has been stated above for the general case, $\operatorname{SU}(2)$ indices into $U(1)$ ones and vice versa, namely

$$
\begin{align*}
& \psi_{i}=u_{i}^{+} \psi^{-}-u_{i}^{-} \psi^{+} \\
& \psi^{ \pm}=u_{i}^{ \pm} \psi^{i}, \quad \psi^{j}=\varepsilon^{j i} \psi_{i} \\
& u^{+j}=\varepsilon^{j} u_{i}^{+} .
\end{align*}
$$

Finally we note that with the help of harmonics u_{i}^{A} one can expand a function defined on G / H and belonging in external indices to an H representation, in powers of u. Namely

$$
\begin{equation*}
F_{(G / H)}^{\left(A_{B}, C\right)}=\sum u_{i}^{A} u_{j}^{B} \ldots u_{l}^{C} f^{i j \ldots l} \tag{2.7}
\end{equation*}
$$

where $f^{i j \ldots l}$ are G irrep coefficients independent of u and the summation is over all (usually infinitely many) monomials in u_{i}^{A} belonging to the same H representation as F (these are nothing but higher harmonics on G / H). For example, in the $\mathrm{SU}(2) / \mathrm{U}(1)$ case one has

$$
\begin{equation*}
F_{(\mathrm{SU}(2) / \mathrm{U}(1))}^{(n+)}=\sum_{k=0}^{\infty} u_{i_{1}}^{+} \ldots u_{i_{k+n}}^{+} u_{j_{1}}^{-} \ldots u_{j_{k}}^{-} f^{\left(i_{1}, \ldots j_{k}\right)} . \tag{2.8}
\end{equation*}
$$

For such functions (they are exactly the reps of G induced from H irreps) one may define covariant differentiation with respect to the coset parameters using the standard
technique of Cartan's forms (see, e.g., Salam and Strathdee 1982). We would not present a general formula but just illustrate this again by the example of $\operatorname{SU}(2) / \mathrm{U}(1)$. The covariant derivatives in -- and ++ directions of $\mathrm{SU}(2) / \mathrm{U}(1)$ have a very simple form in terms of harmonics $u_{i}^{ \pm}$:

$$
\begin{equation*}
D^{++}=u_{i}^{+} \partial / \partial u_{i}^{-}, \quad D^{--}=u_{i}^{-} \partial / \partial u_{i}^{+} . \tag{2.9}
\end{equation*}
$$

Together with the operator

$$
D^{3}=\frac{1}{2}\left(u^{+i} \partial / \partial u^{+i}-u^{-i} \partial / \partial u^{-i}\right)
$$

(which is just the generator of right $U(1)$ transformations and is equal to overall $U(1)$ charge when applied to any function of the type (2.8)) they constitute an $\operatorname{SU}(2)$ algebra:
$\left[D^{++}, D^{--}\right]=2 D^{3}, \quad\left[D^{++}, D^{3}\right]=-D^{++}, \quad\left[D^{--}, D^{3}\right]=D^{--}$.
The last property can be understood from the fact that D^{++}, D^{--}, D^{3} can be alternatively defined as generators of right $\mathrm{SU}(2)$ transformations of the coset $\mathrm{SU}(2) / \mathrm{U}(1)$ (which are realised on indices + , - of harmonics). One more remark concerning that case is in order. Besides the usual complex conjugation (-)

$$
\begin{equation*}
u^{ \pm i} \xrightarrow{(-)} \overline{u^{ \pm i}}= \pm u_{i}^{\mp} \tag{2.10}
\end{equation*}
$$

one can define another involution (*)

$$
\begin{equation*}
u_{i}^{ \pm} \xrightarrow{(*)}\left(u_{i}^{ \pm}\right)^{*}= \pm u_{i}^{\mp} \tag{2.11}
\end{equation*}
$$

allowing, together with (2.10), to define self-conjugated charged objects, say

$$
\begin{equation*}
F^{(n+)}=\frac{*}{\left(F^{(n+)}\right)} \quad(n=2 k) \tag{2.12}
\end{equation*}
$$

The geometric meaning of $*$ is very simple: it takes any point of the sphere $\mathrm{SU}(2) / \mathrm{U}(1)$ to the opposite one, i.e. it is the antipodal mapping of this sphere. We shall see that such an operation is not always possible and correspondingly the reality in the sense of (2.12) can be defined only for certain G / H. This places a strong restriction on the choice of subgroup H .

3. The harmonics for $G=\operatorname{SU}(3)$

Now we are ready to collect useful formulae for harmonics of $G / H, G=S U(3)$, $\mathrm{H}=\mathrm{SU}(2) \times \mathrm{U}(1)$ and $\mathrm{H}=\mathrm{U}(1) \times \mathrm{U}(1)$ (see table 1).

Table 1.

$\mathrm{G}=\mathrm{SU}(3)$	$\mathrm{H}=\mathrm{SU}(2) \times \mathrm{U}(1)$	$\mathrm{H}=\mathrm{U}(1) \times \mathrm{U}(1)$	
Generators of H in the 3×3 matrix form	$\mathrm{SU}(2) \quad T_{i}=\left(\begin{array}{cc}\tau_{i} & 0 \\ 0 & 0\end{array}\right)$ where τ_{i} are $2 \times 2 \mathrm{SU}(2)$ generators	$\mathrm{U}_{1}(1)$	$T_{1}=\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0\end{array}\right)$
	$\mathrm{U}(1) \quad T=\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2\end{array}\right)$	$\mathrm{U}_{2}(1)$	$T_{2}=\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2\end{array}\right)$

Table 1. (continued)

$\mathrm{G}=\mathrm{SU}(3)$	$\mathrm{H}=\mathrm{SU}(2) \times \mathrm{U}(1)$	$\mathrm{H}=\mathrm{L}(1) \times \mathrm{U}(1)$
$q_{1}{ }^{\text {a }}$	$\begin{aligned} & \operatorname{SU}(2) \\ & \operatorname{doublet} q_{i}^{+a}\end{aligned}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$	$q_{i}^{(1,1)}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$
	$\begin{array}{ll}\text { SU(2) } \\ \text { singlet }\end{array} \quad q_{i}^{-}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$	$q_{i}^{(0,-2)}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$
		$q_{i}^{(-1,1)}=\left(\begin{array}{l} 0 \\ 1 \\ 0 \end{array}\right)$
		in what follows, a couple of indices (a, b) represents T_{1} and T_{2} charges, respectively
Harmonics	u_{i}^{+a}, u_{i}^{--} and their conjugater u_{a}^{-i}, u^{++t}	$u_{i}^{(1,1)}, u_{i}^{(-1,1)}, u_{i}^{(0,-2)}$ and their conjugates $u^{(-1,-1) i}, u^{(1,-1) i}, u^{(0,2) i}$
Unitarity $u^{+} u=u u^{+}=1$	$\begin{aligned} & u_{i a}^{+} u_{b}^{-i}=\varepsilon_{a b} \\ & u_{i}^{--} u^{++1}=1 \\ & u_{i a}^{+} u^{++i}=u_{b}^{-i} u_{i}^{--}=0 \\ & -\varepsilon^{a b} u_{a i}^{+} u_{b}^{-j}+u_{i}^{--} u^{++j}=\delta_{i}^{j} \end{aligned}$	$\begin{aligned} & u_{i}^{(1,1)} u^{(-1,-1) i}=1 \\ & u_{i}^{(-1,1)} u^{(1,-1) i}=1 \\ & u_{1}^{(0,-2)} u^{(0,2) i}=0 \\ & u_{i}^{(1,1)} u^{(-1,-1) j}+u_{i}^{(-1,1)} u^{(1,-1) j} \\ & \quad+u_{i}^{(0,-2)} u^{(0,2) j}=\delta_{i}^{\prime} \end{aligned}$
Unimodularity condition $\operatorname{det} u=1$	$\begin{aligned} & \varepsilon^{a b} u_{a i}^{+} u_{b j}^{+}=\varepsilon_{i j k} u^{++k} \\ & \varepsilon^{i j k} u_{a i}^{+} u_{b j}^{+} u_{k}^{-}=\varepsilon_{a b} \end{aligned}$ and their conjugates	$u_{i}^{(0,-2)}=\varepsilon_{i j k} u^{(-1,-1) j} u^{(1,-1) k}$ and their conjugates
Harmonic derivatives preserving unitarity and unimodularity	$\begin{aligned} & D_{a}^{3+}=u^{++i} \partial / \partial u^{-a i}+u_{a i}^{+} \partial / \partial u_{i}^{--} \\ & D_{b}^{3-}=u_{i}^{--} \partial / \partial u_{i}^{+b}+u_{b}^{-i} \partial / \partial u^{++i} \end{aligned}$	$\begin{aligned} D^{(1,3)}= & -u^{(0,2) t} \partial / \partial u^{(-1,-1),} \\ & +u_{i}^{(1,1)} \partial / \partial u_{i}^{(0,-2)} \\ D^{(-1,3)}= & -u^{(0,2) i} \partial / \partial u^{(1,-1) t} \\ & +u_{i}^{(-1,1)} \partial / \partial u_{i}^{(0,-2)} \\ D^{(2,0)}= & -u^{(1,-1) t} \partial / \partial u^{(-1,-1) t} \\ & +u_{i}^{(1,1)} \partial / \partial u_{i}^{(-1,1)} \end{aligned}$ and their conjugates $\begin{aligned} & D^{(1,-3)}=\bar{D}^{(-1,3)} \\ & D^{(-1,-3)}=\bar{D}^{(1,3)} \\ & D^{(-2,0)}=\bar{D}^{(2,0)} \end{aligned}$
Converting indices	$\begin{aligned} & \psi_{i}=-\varepsilon_{a b} u_{i}^{+a} \psi^{-b}+u_{i}^{--} \psi^{++} \\ & \psi^{-b}=u^{-b j} \psi_{j} \\ & \psi^{++}=u^{++j} \psi_{j} \end{aligned}$	$\begin{aligned} & \psi_{i}= u_{1}^{(1,1)} \psi^{(-1,-1)}+u_{i}^{(-1,1)} \psi^{(1,-1)} \\ &+u_{i}^{(0,-2)} \psi^{(0,2)} \\ & \psi^{(\pm 1,-1)}=u^{(\pm 1,-1) j} \psi_{j} \\ & \psi^{(0,2)}=u^{(0,2) j} \psi_{J} \end{aligned}$
Reality and involution (*) (if exists)	no	yes $\begin{aligned} & u_{1}^{(1,1)} \leftrightarrow u_{1}^{(0, \cdot-2)} \\ & u_{1}^{(-1,1)} \leftrightarrow-u_{1}^{(-1,1)} \end{aligned}$

$\mathbf{G}=\mathbf{S U}(\mathbf{4})$	$\mathbf{H}=\mathbf{S U}(3) \times \mathrm{U}(1)$	$\mathrm{H}=\mathrm{SU}_{1}(2) \times \mathrm{SU}_{2}(2) \times \mathbf{U}(1)$	$\mathrm{H}=\mathrm{SU}(2) \times \mathrm{U}_{1}(1) \times \mathrm{U}_{2}(1)$	$H=U_{1}(1) \times U_{2}(1) \times U_{3}(1)$
Generators of H in the 4×4 matrix form	$\mathrm{SU}(3) \quad T_{i}=\left(\begin{array}{ll}\lambda_{i} & 0 \\ 0 & 0\end{array}\right)$	$\mathrm{SU}_{1}(2) \quad T_{a}=\left(\begin{array}{ll}\tau_{a} & 0 \\ 0 & 0\end{array}\right)$	$\mathrm{SU}(2) \quad T_{a}=\left(\begin{array}{cc}\tau_{a} & 0 \\ 0 & 0\end{array}\right)$	$\mathrm{U}_{1}(1) \quad T_{1}=\left(\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$
	where λ_{t} are $3 \times 3 \mathrm{SU}(3)$ generators	$\mathbf{S U}_{2}(2) \quad T_{p}=\left(\begin{array}{cc} 0 & 0 \\ 0 & \tau_{p} \end{array}\right)$	$U_{1}(1) \quad T_{1}=\left(\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right.$	$\left(\begin{array}{llll} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$
	$\mathrm{U}(1) \quad T=\left(\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -3\end{array}\right)$	$\mathrm{U}(1) \quad T=\left(\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right)$	$\begin{array}{rlrl}\mathrm{U}_{1}(1) & T_{1}= & \left.\begin{array}{rrrr}0 & & \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right) \\ & \left(\begin{array}{rrrrr}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right)\end{array}$	$U_{2}(1) \quad T_{2}=\left(\begin{array}{rrrr}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right)$
		τ_{a}, τ_{p} are $2 \times 2 \mathrm{SU}_{1}(2)$ and $\mathrm{SU}_{2}(2)$ generators	$\mathrm{U}_{2}(1) \quad T_{2}=\left(\begin{array}{rrrr}0 & 0 & \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right)$	$\mathrm{U}_{3}(1) \quad T_{3}=\left(\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right)$
$\boldsymbol{q}_{\text {a }}{ }^{\text {a }}$	SU(3) triplet	$\mathrm{SU}_{1}(2)$ doublet	$\mathbf{S U}(2)$ doublet	(1) $\binom{1}{0}$
	$q_{i}^{+a}=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)$	$a_{i}^{+a}=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right)$	$q_{1 a}^{(0.1)}=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right)$	$\begin{aligned} \boldsymbol{q}_{1}^{(1,0,0)}= & \left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right) \\ & \binom{0}{1}\end{aligned}$
	SU(3) singlet	$\mathrm{SU}_{2}(2)$ doublet	SU(2) singlets	$q_{1}^{(-1,0,1)}=\binom{1}{0} \quad q_{1}^{(0,1 .-1)}=\left(\begin{array}{l}0 \\ 1\end{array}\right.$
	(0)	$\binom{0}{0}\binom{0}{0}$	$\binom{0}{0} \quad\binom{0}{0}$	$\binom{0}{0}\binom{1}{0}$
	$\boldsymbol{q}_{1}^{(3-)}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$	$q_{i}^{-p}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$	$\boldsymbol{q}_{1}^{(1,-1)}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right) \quad q_{1}^{(-1,-1)}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$	$q_{t}^{(0,-1,-1)}=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)$
Harmonics	$u_{i}^{a(+)}, u_{i}^{(3-)}$ and their conjugates $u_{a}^{1(-)}, u^{i(3+)}$	$u^{a(+)}, u_{i}^{p(-)}$ and their conjugates $u_{a}^{i(-)}, u_{p}^{i(+)}$	$u_{i a}^{(0,1)}, u_{i}^{(1 .-1)}, u_{i}^{(-1,-1)}$ and their conjugates $u^{i a(0,-1)}, u^{i(-1,1)}, u^{i(1,1)}$	$u_{i}^{(1,0,1)}, u_{i}^{(-1,0,1)}, u_{t}^{(0,1,-1)}, u_{i}^{(0,-1,-1)}$ and their conjugates $u^{(-1.0,-1) i}, u^{(1,0,-1) 1}, u^{(0,-1,1) 1}, u^{(0,1,1),}$

Unimodularity
conditions
$\operatorname{det} u=1$
Harmonic
derivatives
preserving
unitarity and
unimodularity

Converting
indices
Reality and
involution (*)
(if exists)
Table 3.

Harmonics $\quad u_{i}^{u}, u_{i}^{p}$ and their conjugates
$u_{1}^{a}, u_{1}^{+}, u_{1}^{-}$and their conjugates

+ satisfy
and their conjugates

$\boldsymbol{u}^{i(1,0)}=\mathbf{\Omega}^{2 j} \boldsymbol{u}_{i}^{(1,0)}$
$\boldsymbol{u}^{\boldsymbol{u}(0, \boldsymbol{t})}=\mathbf{\Omega}^{i \mathbf{u}_{j}^{(0,1)}}$
$\boldsymbol{u}_{i}^{(1,0)} \boldsymbol{u}^{\mathbf{1}(-1,0)}$

$\varepsilon^{\prime \mu k l} u_{r}^{(1,0)} u_{f}^{(-1,0)} u_{k}^{(0,2)} u_{1}^{(0,-1)}=1$
$D^{(2,0)}=u_{i}^{(1,0)} \partial / \partial u_{i}^{(-1,0)}$ $D^{(-2,0)}=u_{1}^{(-1,0)} \partial / \partial u_{1}^{(1,0)}$
$D^{(0,2)}=u_{(0,1)}^{(0,2)}(0,-1)$
$D^{(0,-2)}=u_{i}^{(0,} \quad\left(\partial / \partial u_{i}^{(0,-1)}\right.$ $D^{(1,1)}=u_{i}^{(1,0)} \partial / \partial u_{i}^{(0,-1)}$
$D^{(1,-1)}=u_{i}^{(1,0)} \partial / \partial u_{i}^{(0,1)}$
$-u_{1}^{(0,-1)} \partial / \partial u^{(1,-1,0)}$
$D^{(i, 1)}=D^{(1,-1)}$

$\psi_{t}=u_{1}^{(1,0)} \psi^{(-1,0)}-u_{1}^{(-1,0)} \psi^{(1,0)}$ $\psi_{1}=u_{i}, \psi^{(0,0)}-u_{i}^{(0,-1)} \psi^{(0,1}$
$+u_{i}^{(0,1)} \psi^{(0,-1)}-u_{i}^{(0,-1)} \psi^{(0,1)}$
$\psi^{(\pm 1,0)}=-u^{(\pm 1,0) i} \psi_{i}$
$\psi^{(0, \pm 1)}=-u^{(0, \pm 1)!} \psi_{i}$
$u_{i}^{(\pm 1,0)} \Leftrightarrow u_{i}^{(0 . \pm 1)}$

$\mathrm{I}={ }_{i 4^{1 r^{3}}} \underline{l}^{\ln } n_{+}^{4} n^{14} n^{10} n_{4 v^{3}}$
$D_{a}^{+}=u_{i a} \partial / \partial u_{i}^{-}-u_{1}^{+} \partial / \partial u_{i}^{a}$
$D_{a}^{-}=u_{i a} \partial / \partial u_{i}^{+}-u_{i}^{-} \partial / \partial u_{i}^{a}$
$D^{++}=u_{i}^{+} \partial / \partial u_{i}^{-}$
$D^{--}=u_{i}^{-} \partial / \partial u_{i}^{+}$
${ }^{\prime} n e / e^{d} \boldsymbol{n}-{ }_{d} \boldsymbol{n} e / e^{{ }^{p} \boldsymbol{n}} \boldsymbol{n}={ }^{\boldsymbol{n} d} \boldsymbol{a}$ $\begin{aligned} & \text { Unimodularity } \\ & \text { det } u=1\end{aligned}$
Harmonic
derivatives
preserving
unitarity and
unimodularity
$\begin{array}{ll}\text { Converting } & \psi_{i}=-\boldsymbol{u}_{i}^{a} \psi_{a}-\boldsymbol{u}_{i}^{p} \psi_{p} \\ \text { indices } & \psi_{a}=\boldsymbol{u}_{a}^{1} \psi_{i}\end{array}$
2
7
7
7
3
Involution $\quad u_{t a} \stackrel{\leftrightarrow}{\leftrightarrow} u_{t p}$

Note that in the case of $\mathrm{H}=\mathrm{SU}(2) \times \mathrm{U}(1)$ there is no proper involution between u_{i}^{A} harmonics allowing us to define an appropriate notion of reality for the harmonic decomposition.

On the other hand, in the case of $H=U(1) \times U(1)$ along with the usual complex conjugation

$$
u_{i}^{(1,1)} \leftrightarrow u^{(-1,-1) i}
$$

there exists another involution generalising the operation (2.11)

$$
\begin{aligned}
& u_{i}^{(1,1)} \leftrightarrow u_{i}^{(0,-2)} \\
& u_{i}^{(-1,1)} \leftrightarrow-u_{i}^{(-1,1)} .
\end{aligned}
$$

Together with the usual conjugation, the latter involution provides a tool for defining reality in the $N=3 \mathrm{sym}$ theory (Galperin et al 1985).

4. Harmonics for $G=S U(4)$

In table 2 we briefly list all the results in our analysis with $G=S U(4)$ for $\mathrm{H}=\mathrm{SU}(3) \times \mathrm{U}(1), \quad \mathrm{H}=\mathrm{SU}(2) \times \mathrm{SU}(2) \times \mathrm{U}(1), \quad \mathrm{H}=\mathrm{SU}(2) \times \mathrm{U}(1) \times \mathrm{U}(1) \quad$ and $\quad \mathrm{H}=$ $\mathrm{U}(1) \times \mathrm{U}(1) \times \mathrm{U}(1)$.

Note that for the case $\mathrm{H}=\mathrm{SU}(2) \times \mathrm{SU}(2) \times \mathrm{U}(1)$ the involution $*$ is defined as

$$
u_{i a}^{(+)} \leftrightarrow u_{i p}^{(-)}
$$

which together with the usual conjugation

$$
\bar{u}_{i a}^{(+)}=u^{i a(-)} \quad \bar{u}_{i p}^{(-)}=u^{i p(+)}
$$

allows us to define reality in $N=4$ susy theory. Reality can be imposed also with $\mathrm{H}=\mathrm{U}(1) \times \mathrm{U}(1) \times \mathrm{U}(1)$ due to the existence of the involution

$$
\begin{array}{ll}
u_{i}^{(1,0,1)} \leftrightarrow u_{i}^{(0,-1,-1)} & u_{i}^{(0,1,-1)} \leftrightarrow u_{i}^{(-1,0,1)} \\
u_{i}^{(-1,0,1)} \leftrightarrow u_{i}^{(0,1,-1)} & u_{i}^{(0,-1,-1)} \leftrightarrow u_{i}^{(1,0,1)}
\end{array}
$$

(the other forms of the latter are possible as well).

5. Harmonics for $\mathbf{G}=\mathbf{U S p}(\mathbf{2})$

Before establishing the harmonic analysis for $G=U S p(2)$ let us briefly recall the definition and introduce the matrix representation of $U S p(2)$.

The Lie algebra corresponding to $\operatorname{USp}(2)$ is formed by 2×2 quaternionic matrices

$$
\left(\begin{array}{rr}
a & c \tag{5.1}\\
-\bar{c} & b
\end{array}\right) \in \operatorname{USp}(2)
$$

a, b are pure imaginary quaternions $(\bar{a}=-a, \bar{b}=-b), c$ is an arbitrary quaternion.

Representing a and b as $\operatorname{SU}(2)$ matrices, we obtain the following 4×4 matrix representation

$$
\left(\begin{array}{c|c}
\mathrm{SU}_{1}(2) & c \tag{5.2}\\
\hline-\bar{c} & \mathrm{SU}_{2}(2)
\end{array}\right) \in \operatorname{USp}(2) .
$$

c is a general $\mathrm{GL}(2, R)$ matrix. Matrices belonging to the $\mathrm{USp}(2)$ group are unitary and have unit determinant as can be checked easily from (5.1) and (5.2). USp(2) is a subgroup of $\mathrm{SU}(4)$. The $\mathrm{USp}(2)$ group is also known to possess an invariant antisymmetric tensor of second rank $\Omega_{i j}$ (symplectic metrics), that is

$$
\Omega_{i j}=\left(\begin{array}{rrrr}
0 & 0 & 0 & 1 \tag{5.3}\\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right)
$$

We shall list below the harmonic analysis on $\mathrm{USp}(2)$ cosets with $\mathrm{H}=\mathrm{SU}_{1}(2) \times \mathrm{SU}_{2}(2)$; $\mathrm{H}=\mathrm{SU}_{1}(2) \times \mathrm{U}_{2}(1) ; \mathrm{H}=\mathrm{U}_{1}(1) \times \mathrm{U}_{2}(1), \mathrm{U}_{I}(1)$ being the diagonal subgroups of $\mathrm{SU}_{I}(2)$, $I=1,2$ (table 3).

6. Conclusion

So far we have constructed objects that can connect the representation space of some group with the representation space of some of its subgroups. This situation will be especially useful in N-extended sym theories. In those theories, by adding the set of harmonics, we come to the concept of harmonic superspace. It turns out that in the harmonic superspace there is a hypersurface spanned by the so-called analytic basis. All the fundamental objects (e.g. superfields) appear naturally in this basis. Roughly speaking, the appearance of analytic basis is connected with the existence of the Cauchy-Riemann (CR) structure (Rosly 1982). With the help of harmonics $\operatorname{SU}(N)$ indices of the spinor covariant derivatives fall into the $\mathrm{H} \subset \mathrm{SU}(N)$ ones. After the Yang-Mills covariantisation of those spinor derivatives by adding connections to them, we can pick out a subset fulfilling the 'flat' algebra. This condition is equivalent to the integrability condition of the Cauchy-Riemann structure. Its presence crucially depends on the choice of H . For the $N=3$ case, e.g., $\mathrm{H}=\mathrm{SU}(2) \times \mathrm{U}(1)$ does not allow the existence of CR structure as $\mathrm{H}=\mathrm{U}(1) \times \mathrm{U}(1)$ does. In the case $N=4$, CR structure does not exist with $H=S U(3) \times U(1), \quad \mathrm{SU}(2) \times \mathrm{SU}(2) \times \mathrm{U}(1), \mathrm{SU}(2) \times \mathrm{U}(1) \times \mathrm{U}(1)$ while it can be constructed for $H=U(1) \times U(1) \times U(1)$.

References

Ahmed E, Bedding S, Card C I, Dumbrell M, Nouri-Moghadam M and Taylor J G 1985 J. Phys. A: Math. Gen. 18 2095
Galperin A, Ivanov E, Kalitzin S, Ogievetsky V and Sokatchev E 1984 Class. Quantum Grav. 1469

- 1985 Class. Quantum Grav. 2155

Rivelles V and Taylor J G 1982 J. Phys. A: Math. Gen. 15163
Roček M and Siegel W 1981 Phys. Lett. 105B 275
Rosly A A 1982 in Proc. Int. Seminar on Group Theoretical Methods in Physics vol 1 (Moscow: Nauka) p 263 Salam A and Strathdee J 1982 Ann. Phys., NY 141316

