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I. The calculus of harmonic variables 
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Abstract. The main technical apparatus of the harmonic superspace approach to extended 
SUSY, the calculus of harmonic variables on homogeneous spaces of the SUSY auto- 
morphism groups is presented in detail for N = 2,3,4. We construct the basic harmonics 
for the coset manifolds G / H  with G=SU(2) ,  H = U ( l ) ;  G=SU(3) ,  H=SU(2)XU(1)  
and H = U(1) xU(1) ;  G =  SU(4), H = SU(3) x U ( l ) ,  H =SU(2)  xSU(2)  x U ( l ) ,  H = 
SU(2) x U( 1) x U( 1) and H = U( 1) x U( 1) x U( l ) ,  G = USp(2), H = SU(2) x SU(2), H = 
SU(2) XU( 1)  and H = U( 1) x U( 1)  and tabulate a number of useful relations between them. 

1. Introduction 

Recently, the concept of harmonic superspace was proposed for obtaining an uncon- 
strained formulation of N = 2 matter, super Yang-Mills (SYM) and supergravity theories 
(Galperin et a1 1984). The same approach proved to be suitable for constructing an 
off-shell N = 3 SYM theory (Galperin er a1 1985), thus circumventing the famous N = 3 
barrier (RoEek and Siege1 1981, Rivelles and Taylor 1982). The main idea consists of 
enlarging the ordinary superspace by some new even coordinates U: that form a basis 
set of harmonic functions on some coset manifold G/H,  G being the.  group of 
automorphisms of the supersymmetry (SUSY) algebra (i.e. SU(2) in N = 2 and SU(3) 
in N = 3 cases, etc), H being one of its subgroups. Then it is possible to extract from 
this enlarged superspace a subspace, called analytic (Galperin et a1 1984,1985), relevant 
for constructing unconstrained SUSY theories. The fundamental superfield objects of 
those theories appear very elegantly as analytic functions defined on this subspace. 

The purpose of the present paper is to give a kind of glossary of harmonic calculus 
for the simplest groups and their cosets G/H.  Only a few of the examples considered 
here have been already used in constructing extended SUSY theories: the relevance of 
the remaining ones may be revealed later. There is a remarkable intimate connection 
between the geometric structure of a SUSY theory and the choice of the homogeneous 
space G/H used to define the harmonic U?. We intend to list all harmonic superspaces 
of interest and their analytic subspaces in another paper based on the matter given 
here. 

We would like to emphasise that for the moment we are not ready to discuss a 
realistic theory of the N = 4 SYM in harmonic superspace. There appear some difficulties 
for this theory, especially the one associated with the reality constraint on the field 
strength (Ahmed et a1 1985). There are some radical ways to resolve this problem, 
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but the discussion of them is beyond the scope of the present paper. We only note 
that these essentially use the harmonic calculus on SU(4) given here. 

The paper is organised as follows. Section 2 describes the general techniques of 
constructing harmonics on some coset space G/H.  For pedagogical reasons we illustrate 
these techniques by the familiar SU(2)/U( 1) example extensively used in N = 2 SUSY 
(Galperin et a1 1984). All other cases are treated analogously to this simplest one. 
Section 3 treats cosets associated with G = SU(3) (both for H = SU(2) x U(1) and 
U ( l )  x U ( l ) ) ,  in § 4 we consider cosets of G =  SU(4) for H = SU(3) x U ( l ) ,  SU(2) X 

SU(2) X U( l),  SU(2) x U( 1) XU( 1) and U( 1) XU( 1) XU( 1). Section 5 is devoted to the 
case of G = USp(2) with H = SU(2) x SU(2), SU(2) x U ( l )  and U( 1) x U( 1). Some brief 
concluding remarks are given in § 6. 

2. General techniques and SU(2)/U( 1) example 

We begin by introducing the set of harmonics U? defined on the manifold G/H,  H c G ;  
H, G being compact groups. We take the matrix representation of G and H, and so 
we can define u:EG/H, to be, say, N x  N matrix. For instance, if G=SU(2)  and 
H = U(1) is its diagonal subgroup, then 

U/ = [exp i(cpT+++ +T--)Iji (2.1) 

where cp is complex variable, 

T++=(o 0 1  ,), T--=(l  0 0  o) 

are SU(2) generators, i, j = 1,2. 

Strathdee 1982) 
The action of an element g: of G on the coset element is defined as (Salam and 

U; + U:’ = g:uk’h:(g, U )  (2.2) 
where h E H is a ‘compensating’ right H transformation. Next, let us introduce a set 
of basis vectors qp  in the G representation space (normally, the fundamental representa- 
tion is considered) such that for any h E H 

(2.3) 

and h c  has a block-diagonal form. Here indices i, j refer to the fundamental irrep of 
G and A, B, . . . run through all irreps of H which are contained in the fundamental 
irrep of G. Thus h t  is the matrix in this reducible H representation. 

q ; + q ; A =  A -  A hrq, =q2 h ,  

Now, the harmonics are defined as 

up = u;qp 
(2.4) 

and they belong to the representation space of G x representation space of H. So, they 
transform under G x H, where G acts from the left and H from the right. 

According to (2.2) and (2.3) the right H transformation is not independent, it is 
completely fixed by the left G ones. However, we can in fact introduce u p  as ‘free’ 
objects in the G x H representation space, i.e. as a kind of vielbein converting G reps 
into H reps. The group G is originally realised on them by left multiplications (without 

G :  U?+ u : ~  = g : u f h t ( g ,  U) 



Harmonic superspaces of extended supersymmetry 3435 

compensating H transformations). At the same time, U? are transformed from the 
right by a new independent gauge group H whose parameters are arbitrary functions of 
U? themselves. If we then fix the H gauge so as to reduce the number of independent 
parameters in U? (equal originally to dim G) to dim G/H,  we recover the standard 
coset formulation (2.4). Thus, requiring invariance under right gauge H transformations 
one may adhere to the 'vielbein' interpretation of U? which is convenient in a number 
of aspects. 

For the SU(2)/U(1) case the q? vectors are evidently 

(+ and - label the U(l )  irreps) that according to (2.3) and (2.4), gives us the harmonics 
from (Galperin et a1 1984), namely 

Let us point out that, since U/ is a G matrix, this implies some relations between 

(2.6a) 

U?, e.g. in the SU(2)/U(1) case: 

U+U = UU+ = 112 

(2.66) 

( 2 . 6 ~ )  

U; = (U+'). 

Here (2.6) represents the unitarity and unimodularity properties of SU(2) matrices. 
We shall see that such constraints are prototypes of those for the more complicated 
cases listed below. Moreover, (2.6) gives us the possibility to convert, as has been 
stated above for the general case, SU(2) indices into U( 1)  ones and vice versa, namely 

$ / i  = U:$/- - U;*+ 

*'= U'$/', (v' = &j'$/,  

u + J -  - - E  J i  u i .  + 

(2.6') 

Finally we note that with the help of harmonics U? one can expand a function defined 
on G/H and belonging in external indices to an H representation, in powers of U. 
Namely 

F ( A B  (G/H)  ... C) = c U f U f .  . . urcf""J (2.7) 

where f"..' are G irrep coefficients independent of U and the summation is over all 
(usually infinitely many) monomials in U? belonging to the same H representation as 
F (these are nothing but higher harmonics on G/H).  For example, in the SU(2)/U(l) 
case one has 

For such functions (they are exactly the reps of G induced from H irreps) one may 
define covariant differentiation with respect to the coset parameters using the standard 



3436 E Ivanov et a1 

technique of Cartan's forms (see, e.g., Salam and Strathdee 1982). We would not 
present a general formula but just illustrate this again by the example of SU(Z)/U(l). 
The covariant derivatives in - - and + + directions of SU(2)/U( 1) have a very simple 
form in terms of harmonics U:: 

D++ = u t  a/au ; ,  D-- = U; a / a u t .  (2.9) 

Together with the operator 
D3 =+(U+[ a / a U + '  - 8,iau-j) 

(which is just the generator of right U( 1) transformations and is equal to overall U( 1) 
charge when applied to any function of the type (2.8)) they constitute an SU(2) algebra: 

p + + ,  D--3 = 2 0 3 ,  p++, 033 = -D++, [D-- ,  P I =  D-- 

The last property can be understood from the fact that D++, D--, D3 can be 
alternatively defined as generators of right SU(2) transformations of the coset 
SU(2)/U(1) (which are realised on indices +, - of harmonics). One more remark 
concerning that case is in order. Besides the usual complex conjugation (-) 

( - 1  - 
U f i  - U f i  = *U: (2.10) 

one can define another involution (*) 
(* '  

U'- (U?)* = * u s  

allowing, together with (2. lo),  to define self-conjugated charged objects, say 
* 

p n + )  = ( F ( n + ) )  ( n = 2 k ) .  

(2.11) 

(2.12) 

The geometric meaning of * is very simple: it takes any point of the sphere SU(2)/U(1) 
to the opposite one, i.e. it is the antipodal mapping of this sphere. We shall see that 
such an operation is not always possible and correspondingly the reality in the sense of 
(2.12) can be defined only for certain G/ H. This places a strong restriction on the choice of 
subgroup H. 

3. The harmonics for G =SU(3) 

Now we are ready to collect useful formulae for harmonics of G/H,  G=SU(3) ,  
H = S U ( 2 ) x U ( l )  and H = U ( l ) x U ( l )  (see table 1). 

Table 1. 

G = S U O )  H = SU(2) x U(1) H = U(1) x U(1) 

Generators of H in 
the 3 x 3  matrix form U , ( ] )  

where T~ are 2 x 2  SU(2)  
gene'rators 

U(1) 
0 0 -2 
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Table 1. (continued) 

G = SU(3) H = S U ( 2 )  xU(1) H = L'(1) x U(1) 

Harmonics u y ,  U;- 

U;', U++' 
and their conjugat@ 

in what follows, a couple 
of indices ( U ,  b )  represents 
TI and T2 charges, respectively 

u;l,l), u;-l*l)  u,(0.-2) 

and their conjugates 
u(- l , - lb u(l,-lll u(0,2)L 

Unimodularity E a b U I , U : ,  = E,JkU++k 

condition E " k U f U ~ J U ; - =  E,b 

det U = 1 and their conjugates 

,,l(O.-Z) = E ,,(-1.-1~J,,~1,-1~k 
Yk 

and their conjugates 

Converting 
indices 

Reality and no 
involution (*) 
( i f  exists) 
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- - 0 0 0 -  
> 0 0 0  0 0 0 -  I 

0 0 - 0  
I 

3 0 0 0  
0 0 - 0  - -  

: I  > - 0 0  
I 0 0 0 0  0 - 0 0  

- 
0 0 0  I 

I 
0 0 - 0  

- 0 0 - 0  I 
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0 0 0 0  0 - 0 0  
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Note that in the case of H = SU(2) x U( 1) there is no proper involution between 
up harmonics allowing us to define an appropriate notion of reality for the harmonic 
decomposition. 

On the other hand, in the case of H = U( 1) XU( 1) along with the usual complex 
conjugation 

u;l . l )++ u ( - l . - l h  

there exists another involution generalising the operation (2.1 1) 

( l , l i &  ui(0,-2i ui 
u / - l J  1 t, - - 1.1 1. 

Together with the usual conjugation, the latter involution provides a tool for defining 
reality in the N = 3 SYM theory (Galperin et a1 1985). 

4. Harmonics for G = SU(4) 

In table 2 we briefly list all the results in our analysis with G =  SU(4) for 
H = SU(3) x U ( l ) ,  H = SU(2) xSU(2) x U ( l ) ,  H = SU(2) xU(1)  xU(1)  and H = 

Note that for the case H = SU(2) xSU(2)  x U(1) the involution * is defined as 
U(1) XU(1) XU(1). 

u p a  U(-) 
IP 

which together with the usual conjugation 

allows us to define reality in N = 4  SUSY theory. Reality can be imposed also with 
H = U( 1) XU( 1) x U( 1) due to the existence of the involution 

(the other forms of the latter are possible as well). 

5. Harmonics for G = USp(2) 

Before establishing the harmonic analysis for G=USp(2)  let us briefly recall the 
definition and introduce the matrix representation of USp(2). 

The Lie algebra corresponding to USp(2) is formed by 2 x 2  quaternionic matrices 

a, b are pure imaginary quaternions ( E  = ,a, 6= -b ) ,  c is an arbitrary quaternion. 
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Representing a and b as SU(2) matrices, we obtain the following 4 X4 matrix 
representation 

(5.2) 

c is a general GL(2, R )  matrix. Matrices belonging to the USp(2) group are unitary 
and have unit determinant as can be checked easily from (5.1) and (5.2). USp(2) is a 
subgroup of SU(4). The USp(2) group is also known to possess an invariant antisym- 
metric tensor of second rank R, (symplectic metrics), that is 

0 0 1  

O 0)  
0 - 1 0 0 ’  

0 0 0  

(5.3) 

We shall list below the harmonic analysis on USp(2) cosets with H = SU1(2) x SU2(2); 
H = SU,(2) x U2(l) ;  H = U,(1) x U2(l) ,  U,(1) being the diagonal subgroups of SU1(2), 
I = 1,2  (table 3) .  

6. Conclusion 

So far we have constructed objects that can connect the representation space of some 
group with the representation space of some of its subgroups. This situation will be 
especially useful in N-extended SYM theories. In those theories, by adding the set of 
harmonics, we come to the concept of harmonic superspace. It turns out that in the 
harmonic superspace there is a hypersurface spanned by the so-called analytic basis. 
All the fundamental objects (e.g. superfields) appear naturally in this basis. Roughly 
speaking, the appearance of analytic basis is connected with the existence of the 
Cauchy-Riemann (CR) structure (Rosly 1982). With the help of harmonics SU( N )  
indices of the spinor covariant derivatives fall into the H c  SU( N )  ones. After the 
Yang-Mills covariantisation of those spinor derivatives by adding connections to them, 
we can pick out a subset fulfilling the ‘flat’ algebra. This condition is equivalent to 
the integrability condition of the Cauchy-Riemann structure. Its presence crucially 
depends on the choice of H. For the N = 3 case, e.g., H = SU(2) x U( 1) does not allow 
the existence of C R  structure as H = U( 1) x U( 1) does. In the case N = 4, CR structure 
does not exist with H = SU(3) x U( l),  SU(2) x SU(2) x U( l ) ,  SU(2) x U( 1) x U( 1) 
while it can be constructed for H = U ( l )  xU(1) xU(1).  
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